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The chemically very different minerals aenigmatite and sapphirine are crystallographically closely 
related, being ordered members of isomorphous families of OD structures consisting of equivalent 
layers. The symbol of the OD-groupoid family characterizing their symmetry is 

Pl(2/n)l {1(22/cl/2)1 }. 

Formulae for the structure factor are deduced for the general member of the family and then specialized 
to explain the diffraction pattern of some members of interest. The twinned structures of aenigmatite, 
rh6nite and krinovite are explained as OD twins; the constituting twin individuals are structures of 
maximum degree of order corresponding to the OD-groupoid family quoted above. 

Introduction 

Sapphirine from Mautia Hill (Tanganyika) was studied 
by McKie (1963), who pointed out its peculiar features. 
In fact, although its chemical composition 
M +2 • +3 • g3.67Mn0.04Feo.17T10.01Fe0.33Als.07Sll.75020.00 is nor- 
mal, its diffraction pattern is unusual. The X-ray diffrac- 
tion pattern was described (McKie, 1963) on the basis 
of a monoclinic unit cell with dimensions: a=9.85, 
b=28-6, e=9.96 A, fl= 110030 '. The salient feature of 
the pattern is the presence of diffuse streaks parallel to 
b* for l =  2n + 1, besides sharp spots for l=  2n. 

The structure of sapphirine was not known at the 
time, but Patterson syntheses calculated by Fleet (1967) 
showed that the oxygen ions were approximately cubic 
close-packed with Si +4 and A1 +3 in tetrahedral sites 
and A1 +3 and Mg +2 in octahedral sites. McKie (1963) 
put forward the hypothesis that the special features of 
Mautia Hill sapphirine were linked to a partial ordering 
of A1 +3 and Mg +2 among the octahedral sites. Accord- 
ing to this interpretation, two extreme structural states 
would exist: a disordered state corresponding to nor- 
mal sapphirine and a highly ordered state correspond- 
ing to a hypothetical structure with doubled b transla- 
tion. Mautia sapphirine, with its characteristic diffuse 
streaks, would have a partially ordered structure. 

The solution of the crystal structures of sapphirine 
Mg3.sA1o.0Sil.sO20 (Moore, 1968, 1969) and aenigmatite 
Na2FesTiSi6020 (Merlino, 1970; Cannillo, Mazzi, 
Fang, Robinson & Ohya, 1971) by showing the close 
crystallochemical similarities between these chemically 
very different minerals opened the way to explain the 
nature of Mautia sapphirine. 

The aim of this paper is to deal with the structural 
nature of Mautia sapphirine, together with the related 
questions of the relations between sapphirine and 

aenigmatite, and the twinning in aenigmatite and 
aenigmatite-like minerals, on the basis of OD theory 
(Dornberger-Schiff, 1956, 1964, 1966). 

Deduction of the OD-groupoid family of sapphirine and 
aenigmatite from X-ray data 

The distribution of intensities in reciprocal space can 
most easily be visualized by looking at Fig. 1, which 
presents a unified scheme projected along the b* axis. 
The meaning of the full and empty circles is the same 
for aenigmatite, sapphirine and sapphirine from Mau- 
tia Hill. The meaning of the crosses is, however, differ- 
ent for the different substances. We propose to discuss 
first the diffraction pattern of sapphirine of Mautia 
Hill, but wish to emphasize here that the close relation 
between the diffraction patterns of these substances 
suggests a close relation between the structures (see 
below). 

The systematic presence or absence of intensity in 
the diffraction pattern of sapphirine of Mautia Hill 
may be summarized as follows: 

(a) For l=  2n there are sharp reflexions; for l=  2n + 1 
there are diffuse streaks parallel to b*; 

, (b) There are maxima on the diffuse streaks, and it is 
possible to assign integral indices hkl to these maxima 
as well as to the sharp reflexions. This is purely formal, 
because the diffuse streaks prove that there is no perio- 
dicity perpendicular to a* and c* and thus no basic 
translational vector b. 

(c) Sharp reflexions (l=2n) are present only for 
2h + k + l-- 4n. This rule is equivalent to two rules: 

(cl) hkl reflexions with l=2n are present only for 
k=2n. The sharp reflexions taken by themselves may 
thus be indexed (indices hKL) with respect to a larger 
reciprocal cell with B*= 2b* and C*= 2c*. 
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@2) hKL are present only if h + K +  L =  2n, where the 
indices hKL refer to the reciprocal vectors a*B*C*, i.e. 
K=k/2, L=//2. 
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Fig. 1. Distribution of intensities in reciprocal space for 
aenigmatite, sapphirine and sapphirine of Mautia Hill. 
Sharp reflexions are indicated by (s); (wm) and (nm) indicate 
respectively wide maxima and narrow maxima on streaks. 

(d) In the hOI reciprocal plane sharp reflexions are 
present only for h = 2n (and l -4n) ,  the diffuse streaks 
vanish except for h = 2 n +  1 (and l = 2 n +  1). 

Condition (a) shows that, although the real struc- 
ture is periodic only in two dimensions with transla- 
tional vectors a,b, a fictitious structure with electron 
density ~ (xyz) related to the electron density of the real 
structure by 

(xyz)= ½Mx, y,z) + ~(x,y,z +½)] 
is periodic in three dimensions. Such a fictitious struc- 
ture is usually called the superposition structure. 

From condition (ca) it follows that the superposition 
structure has the basic vectors A = a, B = b/2, C = e/2. 
From condition @2) it follows that the superposition 
structure is body-centred. Condition (d) indicates the 
presence of n-glide planes perpendicular to b, in the 
real structure, of a-glide and c-glide planes in the super- 
position structure. 

Only two space groups are thus possible for the 
superposition structure: Ia and I2/a (corresponding, 
with another choice of a and c axes, to Cc and C2/c 
respectively) (see Fig. 2). We may assume that the 
symmetrically equivalent asymmetric units of the 
superposition structure originate from symmetry-equiv- 
alent parts of the real structure. This assumption fol- 
lows from the assumption that the real structure is 
built of geometrically equivalent layers. 

The n-glide plane deduced from condition (d) links 
asymmetric units related by it rigidly one to the other. 
Therefore asymmetric units related in this way should 
be considered as belonging to the same layer. Thus 
P l(n)l results as the minimum symmetry of the single 
layer. The different layers are translationally equivalent 
and adjacent layers are related by a vector (2a + b - e ) / 4  

A zk 
c½ 

A A 

I A A 
. . . . . . . . . . .  _ 7  . . . .  

A 
(a) (b) 

A 

Lo 

c/2 
4 

/k A A 

/t A A 
(c) 

Fig. 2. (a), (b) The two possible positions of layer L~ relative to L0. (c) The superposition structure. 
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or (2a + b + c)/4 corresponding to the translational vec- 
tor ( a + B +  C)/2 producing the body-centring of the 
superposition structure. The result of the symmetry of 
the single layer and of these translations is the OD- 
groupoid family: 

Pl (n) l  
{l(c,)l} 

and the space group of the corresponding superposition 
structure is Ia. The only other family (space group of 
superposition structure I2/a) compatible with the 
quoted observed facts is 

P l(2/n)l 

{ 1( )1 } 
In either of these cases, a pair of layers linked by the 
glide operation c~ indicated in the symbol is geometri- 
cally equivalent to a pair linked by a glide operation c~ 
with translational component in the opposite direction. 
The disordered structure is characterized by a stacking 
of layers which is not periodic corresponding to these 
two possibilities. 

Fig. 2(a) and (b) shows schematically the symmetry 
of two adjacent layers L0 and L 1 and the two possibilities 
for their relative position; Fig. 2(c) shows the super- 
position structure. The higher symmetry P l(2/n)l was 
assumed for the single layer. 

Discussion of the position of maxima on the streaks 

In either of the two OD-groupoid families deduced 
above, there exist two essentially different family mem- 
bers of maximum degree of order: one in which all 
glide operations converting any one layer into the 
subsequent one have the same translational component 
[to be called MDO1 if the glide operation is (c,), MDO~ 
if it is (c¥)], and another (MDOz) in which glide opera- 
tions (c,) and (c¥) alternate. MDO1, MDO~ and, in the 
case of the OD-groupoid family of higher symmetry, 
MDO2 deserve the name 'of maximum degree', because 
all triples of consecutive layers are geometrically equiv- 
alent and similar statements hold for all quadruples, 
for quintuples and for higher n-tuples. Although in the 
case of MDO2 in the family of lower symmetry there 
are two kinds of triples, (L2,,,Lz,,+I, Lz,,+z) on the one 
hand and (L2,_ 1, L2,, Lz, +,) on the other, it has to be 
called a structure of maximum degree of order as well, 
because no structure is possible containing triples of 
only one kind. 

A pure MDO~ structure would have reflexions at 
the positions indicated for aenigmatite; MDO~ would 
have reflexions at positions with the k values for dif- 
ferent crosses interchanged. Thus a disordered struc- 
ture in which regions MDO~ and MDO~ alternate 
would have maxima at k = 2n + 1 for all crosses (i.e. the 
narrow maxima of sapphirine from Mautia Hill). A 
pure MDOE structure would have reflexions at all 
crosses k=2u  (if referred to the same reciprocal axes 

a*,b*,c*), i.e. at the position of the wide maxima of 
sapphirine from Mautia Hill. Thus the occurrence of 
the narrow and wide maxima in the diffraction pattern 
of this mineral is explained by the assumption that in 
the disordered sample investigated there are present 
large regions MDO1 and MDO[ and smaller regions 
contributing to the reflexions at k=2n.  The fact that 
the wide maxima are, at least in diffraction patterns of 
some samples, more intense than the narrow maxima 
indicates that the regions MDO~ and MDO~ occupy, 
all in all, a smaller volume of the crystal than the re- 
gions corresponding to MDO2. The broadness of the 
maxima at k = 2n indicates that the domains contribut- 
ing to them can only be of very limited thickness, 
perhaps between 10 and 50 layers each, whereas the 
coherent regions of MDO~ and MDO~ must have an 
extension at least one order of magnitude larger. These 
observations are in keeping with the hypothesis put 
forward by one of us (Merlino, 1973) that the samples 
which show this effect are the results of a solid-state 
reaction which converts the original MDO1 single crys- 
tal or MDOdMDO~ twin with large coherent domains 
gradually into a multitude of narrow coherent domains 
originating from nuclei of MDO2, MDO;, MDO[ and 
MDO2'  cropping up independently when the condi- 
tions (temperature and/or pressure) change. Here the 
three dashed MDO2 domains are obtained from the 
undashed one by shifts of c/2, ( 2 a + b + c ) / 4  and 
(2a + b - c ) / 4  respectively plus integral multiples of the 
lattice constants. 

Deduction and discussion of the Fourier transform in its 
dependence on the structure of a single layer 

and the stacking of layers 

The equipoints of a single layer L0 are 

[Lol=(x,y,z; x +½,fi, z +½). 

and thus for its Fourier transform Fo(h, 0,1) 

F0(h,r/,l) = ( -  1) n+' • Fo(h,~7,1) 
holds. 

All layers are translationally equivalent; the transla- 
tion converting any layer Lq_l into its successor L 4 is 
equal to 

tq = a/2 + b0 + flqc/4 

where flq is + 1 or - 1, and b0 is perpendicular to a and 
c but different from the basic vector b to which the 
formal indexing referred (see above), r/ refers to this 
new scaling. 

The equipoints of Lp may now be expressed in terms 
of the equipoints of Lp_ 1 or of L0: 

[Lp] =[Lp_ ~] + (½,1,tip/4) 
P 

=[Lo]+(p/2,p,¼ ~ flq) . 
q = l  

P 
The sum ~ fl~ is even for p even, and odd for p odd; 

q .= l  
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we may, therefore, replace it by. 
P 

E flq=2mp+P 
q=l 

where the numbers m, are integral and depend on the 
stacking: 

• [L,,]=[Lo]+(p/2,p, mp/2 +p/4) .  

Thus the Fourier transform of a layer Lp is related to 
the Fourier transform of L0 by 

and the Fourier transform F(h~l) of the structure is 

F(krll)= E Fp= S(hrll) . Fo 
P 

with 

h l lrn)v - S(hrll) = ~ exp { 2~ri [ ( ~ + rl + --4- ) P + _  1 } "  

For l even we obtain with l =  2L 

For a large number of layers this expression vanishes 
except for integral values of (k + L)/2 + ~1, i.e. except for 
integral values of r//2 which we may indicate by 

and 

~ = K (K integral) 
2 

h+K+L=2n.  

These conditions are the conditions observed for the 
sharp reflexions and lead to the appropriate scaling in 
the b* direction. As for the sharp reflexions k=2K, 
this leads to the relation k=4r/  or rl=k/4 for all the 
reflexions and maxima on the streaks. For the maxima, 
i.e. for l odd and r/= k/4 with k integral: 

S(hkl)=~exp{2Tci[(-~-+ p +  ~ - ] }  

For the narrow maxima corresponding to MDO1 and 
MDO~ respectively" 

S(hkl)-- E ( -1 )  (h+ ~)p+mp 
P 

With the abbreviations 

( -  1) mzp'=R and ~ ( -  1) m2p"+l = Q 
p '  p,, 

this becomes 
k+l 

S(hkl) = R + ( -  1) h +~-- Q 
o r  

S(hkl)=R+ Q for 2h+k + / = 4 n  

S(hkl) = R -  Q for 2k+k + l = 4 n + 2 .  

If, therefore, as in the diffraction pattern of aenigma- 
tite, the reflexions with 2h+k+l=4n are missing, we 
may conclude that R = - Q ;  if the whole intensity dis- 
tribution, including the narrow maxima, shows mono- 
clinic symmetry, this may either be because R = 0 ,  be- 
cause Q--0 or because there is a statistical distribution 
of mosaic regions with various R and Q values. 

For the wide maxima of the Mautia Hill sample and 
the reflexions of sapphirine, k = 2n and thus 

S(hkl)= E ( -  1)  (h+k)p+mp i zp 
P 

= ~  (-1)m2p'+P'-~ - iz~  ( -  1)h+k+mz""+l+P" 
p '  p , ,  

Thus for all sets of points with l odd and k even the 
absolute value [S(hkl)] is the same. 

Aenigmatite and sapphirine as OD structures 

The close structural relations between aenigmatite and 
sapphirine are reflected in the relationship between 
their unit cells. In fact the triclinic aenigmatite cell with 
a=10.406, b=10.813, c=8.926 A~, ~=104°56 ', fl= 
96 °52', y=  125 ° 12' (Kelsey & McKie, 1964) can be 
described in terms of a fourfold pseudo-monoclinic 
cell, plainly related to those of sapphirine and Mautia 
sapphirine (Table 1). 

The crystal structure of aenigmatite was obtained by 
Merlino (1970) assuming that the asymmetric unit of 
this mineral, apart from its chemical composition, 
would be the same as that of sapphirine. Thus if we 
can prove that aenigmatite is actually an OD structure, 
we prove at the same time that sapphirine is also an 
OD structure. 

In Table 2 we give the atomic coordinates in aenig- 
matite referred to the triclinic cell as well as the corre- 
sponding coordinates referred to the monoclinic cell 
as given in the present work (transformation matrix 

--  1 1 3  Z T 1  [001/~4~/24-~]). The triclinic coordinates were derived 
from those given by Fang, Robinson & Ohya in the 
paper of Cannillo et al. (1971), because of their low 
standard deviations. The following modifications were 
made: 

(1) The origin was translated +b/2 relative to the old 
one; 

(2) Some atoms were substituted by symmetry-equiv- 
alent atoms. 

The substitutions used are given in Table 3, the re- 
sulting atomic coordinates (with the Roman numeral 
indicating the substitution used) in Table 2, with refer- 
ence to the triclinic and fourfold pseudo-monoclinic 
cell. It can be observed that all the atoms have Ym co- 
ordinates with values [Ym[ <--~, which assures that all the 
atoms listed belong to the same layer L0. 

Every atom of the list has a symmetry-related atom 
at coordinates Xm,Ym,Zm (space group PT), apart from 
M(1) and M(2) which are located on inversion centres. 
It can be observed that in general the atoms can be 
collected in groups of four atoms with coordinates ap- 



172 S A P P H I R I N E ,  A E N I G M A T I T E  A N D  A E N I G M A T I T E - L I K E  M I N E R A L S  

prox imate ly  related to each o ther  as Xm,Ym, Zm; 
½-- X,,, y,,,, ½-- Z,, ; 2,,,p,,,,~.,,, and  ½ + x , , , p , , , l + z , ,  as to 
be expected for  a toms  of  a layer  with p lane  space 
g roup  P 1 (2/n)1 which is indicated by the O D - g r o u p o i d  
family  deduced  above.  As noted  above  M(1) and  M(2) 

7,0,  2, and  0 ,0 ,0 ,  respec- lie on symmet ry  centres at  1 1 
tively; M(5),  M(6) and  M(7) deviate only slightly f rom 
the special posi t ions on the twofold axes a n d  are ap-  
p rox imate ly  related t h r o u g h  an n-glide p lane  to the 
equivalent  a toms  at  Xm,Ym, gin" Thus  all the a toms  o f  the 
layer  confo rm to the ideal symmet ry  P2/n. The devia- 
t ions f r o m  this symmet ry  are fair ly small  (mean value 
0.08 A), a l though  statistically highly significant, as 

c o m p a r e d  with the s t anda rd  deviat ions in a tomic  co- 
ordinates .  

The largest  deviat ions f r o m  the ideal symmet ry  are 
presented by the two a tom pairs  0(8), 0(20) and  0(10), 
0(19), 0.18 /~ and  0.22 /~ respectively. This can be 
easily unders tood ,  as these oxygen a toms  with coor-  
dinates lYre]-~ lie in the outskir ts  o f  the layer. 

Twinning in aenigmatite and aenigmatite-like minerals 

It is well k n o w n  tha t  aenigmat i te  of  volcanic pa ragen-  
esis is character is t ical ly  polysynthet ica l ly  twinned  on a 
submicroscopic  scale with the b axis o f  the pseudo-  

Table  1. Pseudo-monoclinic cell o f  aenigmatite compared with the cells o f  sapphirine and Mautia sapphirine 

Aenigmatite 
Sapphirine 
Mautia sapphirine 

(1) Merlino (1971) 
(2) Fleet (1967) 
(3) McKie (1963) 

a b c ]3 
10"141 .~ 29"629 A 10"406/~ 107o43 ' (1) 
9.77 14"54 10.06 110020 ' (2) 
9-85 28"6 9"96 110030 ' (3) 

Table  2. Atomic coordinates o f  aenigmatite, referred to the triclinic and to the four fo ld  monoclinic cell 

Standard deviations are given in parentheses. 
Symmetry equivalent positions are given in Table 3. 

Coordinates in the triclinic cell Coordinates in the monoclinic cell 
x y z x, .=(y+z)/2 y , .=(y-z ) /4  z , .=-x+(3y+z)]4  

M(1) (i) 0 ½ ½ ½ 0 0 
M(2) 0 0 0 0 0 0 
M(5) 0.0961 (4) 0-4392 (3) 0"0530 (3) 0-2461 (2) 0-0966 (1) 0-2466 (5) 
M(6) 0-5959 (3) 0"4432 (3) 0-0661 (3) 0"2547 (2) 0"0943 (1) -0"2470 (4) 
M(7) (ii) -0"0030 (4) 0"2434 (4) 0"2577 (3) 0"2506 (3) -0"0036 (1) 0"2500 (5) 
M(3) (ii) -0"6786 (3) 0"3528 (3) 0"1779 (3) 0"2654 (2) 0"0437 (1) 0"9878 (4) 
M(4) 0"7655 (3) 0"3199 (3) 0"1511 (3) 0"2355 (2) 0"0422 (1) -0-4878 (4) 
Na(1) (ii) -0.7911 (8) 0-1298 (8) 0.3893 (7) 0.2596 (5) -0.0649 (3) 0.9858 (10) 
Na(2) 0.6607 (8) 0-1117 (9) 0.3741 (8) 0.2492 (6) -0.0656 (3) -0.4834 (11) 
T(1) (iii) 0.5232 (5) 0.2655 (5) 0.6687 (5) 0.4671 (4) -0-1008 (2) -0-1569 (6) 
T(4) (ii) -0-7228 (5) -0.1618 (5) 0.2252 (5) 0-0317 (4) -0.0968 (2) 0.6578 (6) 
T(2) (iii) 0-0136 (5) 0.2637 (5) 0.6534 (5) 0.4586 (4) -0.0974 (2) 0.3475 (6) 
T(3) (ii) -0.2079 (5) -0-1565 (5) 0.2416 (4) 0.0426 (3) -0.0995 (2) 0.1509 (6) 
T(5) 0-6487 (5) 0.4448 (5) 0.4447 (5) 0.4448 (4) 0.0000 (2) -0.2039 (6) 
T(6) (ii) -0.6472 (5) 0.0588 (5) 0.0501 (5) 0.0545 (4) 0.0022 (2) 0.7038 (6) 
O(1) (iv) -0.6458 (14) 0.5641 (14) 0.1621 (13) 0.3631 (10) 0.1005 (5) 1.1094 (18) 
O(12) (v) 0-8430 (14) 0-3312 (14) -0.0612 (12) 0.1350 (9) 0.0981 (5) -0.6099 (18) 
0(2) (i) 0-8611 (14) 0.5666 (13) 0.1807 (12) 0.3737 (9) 0.0965 (5) -0-3910 (17) 
O(11) (vi) -0.6653 (14) 0.3256 (14) -0.0709 (12) 0.1274 (9) 0.0991 (5) 0-8918 (18) 
0(3) (ii) -0-4460 (15) 0.4534 (15) 0.2958 (13) 0.3746 (10) 0.0394 (5) 0.8600 (19) 
O(13) 0.5233 (15) 0.2108 (14) 0.0393 (12) 0.1251 (9) 0.0429 (5) -0.3554 (19) 
0(4) (vii) 1.0151 (15) 0.4258 (15) 0.2670 (13) 0.3464 (10) 0.0397 (5) -0.6290 (19) 
0(5) (ii) 0.7647 (15) 0-3747 (14) 0.3933 (13) 0.3840 (10) -0.0047 (5) 1-1441 (19) 
O(16) 0-7510 (14) 0.1018 (15) 0.1275 (13) 0-1147 (10) -0.0064 (5) -0.6428 (18) 
0(6) 0.7541 (15) 0"3843 (14) 0.3902 (13) 0-3873 (10) -0.0015 (5) -0.3683 (19) 
O(15) (ii) -0.7583 (15) 0.1060 (16) 0.1120 (13) 0.1090 (10) -0.0015 (5) 0.8658 (19) 
0(7) (viii) -0-4929 (15) 0.3052 (15) 0.5027 (13) 0.4040 (10) -0.0494 (5) 0-8475 (19) 
O(17) 0.4002 (14) 0.0015 (14) 0.1883 (12) 0.0949 (9) -0-0467 (5) -0.3520 (18) 
C(8) 0.9575 (14) 0.2755 (14) 0.4871 (12) 0.3813 (9) -0.0529 (5) -0.6291 (18) 
O(18) (ix) -1.0637 (16) 0.0147 (16) 0.2264 (14) 0.1206 (11) -0-0529 (5) 1.1313 (20) 
0(9) (viii) -0.8996 (15) 0.1770 (14) 0.6265 (13) 0.4018 (10) -0-1124 (5) 1.1890 (19) 
0(20) 0.6731 (15) -0.1374 (15) 0.3366 (13) 0.0996 (10) -0.1185 (5) -0.6920 (19) 
O(10) (iii) 0.5966 (15) 0.1636 (15) 0-6471 (13) 0.4054 (10) -0-1209 (5) -0.3121 (19) 
O(19) (ii) -0.8352 (14) -0.1351 (14) 0-3183 (12) 0.916 (9) -0.1134 (5) 0-8153 (18) 
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Table 3. Indication of  the symmetry-equivalent atom 
taken for the calculation Of Xm,Ym, Zm (Table 2) 

The atomic coordinates given by Fang, Robinson & Ohya are 
called x,y+½,z 

x y z 
i x l + y  z 
ii - l + x  y z 
i i i  1 - x - y  1 - z 
iv - 1 + x  1 + y  z 
v 1 --x - y  --z 
vi  - - x  - - y  - - z  
v i i  1 + x y z 
v i i i  - - x  - - y  1 - - z  
ix  - - 2 + x  y z 

monoclinic cell as twin axis (Kelsey & McKie, 1964). 
Similar polysynthetic twinning occurs in two other 

minerals, isostructural with aenigmatite, namely rh6n- 
ite, Ca2(Mg, Fe+2)4Fe+aTiAlaSi3020, (Walenta, 1969) 
and krinovite, Na2Mg4CrzSi602o, (Merlino, 1972). The 
diffraction patterns of such twins (Walenta, 1969; 
Merlino, 1972) show that they are built of alternating 
ordered regions with structures MDO1 and MDO~ with 
common boundary layers. This twinning is in keeping 
with the definition of OD twins by Dornberger-Schiff 
& Grell-Niemann (1961). 

We may thus conclude that sapphirine, Mautia sap- 
phirine and aenigmatite are members of isomorphous 
families of OD structures, and that the same is prob- 

able - in spite of their very different chemical compo- 
sition - of rh6nite and krinovite. 

Aenigmatite and sapphirine are ordered members of 
their family, Mautia sapphirine is a disordered member. 
The twinned structures of aenigmatite, rh6nite and 
krinovite correspond to an intermediate degree of 
ordering: the twin individuals may be considered as 
periodic OD structures, but the twins are non-periodic 
OD structures, as the twinning violates the periodicity. 
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Diffraction Patterns even with Anomalous Dispersion 
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The geometrical conditions that a structure gives centrosymmetric diffraction patterns have been 
investigated. It is shown that Friedel's law may hold for certain non-centrosymmetric structures con- 
taining two or more kinds of anomalous scatterer. Therefore, their absolute configurations can never 
be established by ordinary absorption-edge techniques. The geometrical characteristics of such a 
structure are discussed in terms of a vector set. 

I n t r o d u c t i o n  

When a non-centrosymmetric crystal contains anoma- 
lous scatterers for a given incident radiation Friedel's 
law does not hold and the crystal will give non-centro- 
symmetric diffraction patterns with a symmetry which 
is in general proper to the point group of the crystal. 
However, there may be exceptions. An obvious excep- 
tion is found in the well-known fact that the diffrac- 
tion patterns from a non-centrosymmetric crystal are 

always centrosymmetric even with anomalous disper- 
sion when the crystal consists of only one kind of atom 
[i.e. the crystal of an element, such as ~-manganese 
(space group 1-43m), metallic selenium and tellurium 
(both P3121 or P3221)]. 

In the present paper, it is pointed out that there may 
exist certain kinds of non-centrosymmetric structures, 
other than elements, for which Friedel's law is always 
valid even in the case involving X-ray anomalous dis- 
persion. 


